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ABSTRACT

We present a tool for real-time visualization of motion features in
2D image sequences. The motion is estimated through an eigen-
vector analysis of the spatio-temporal structure tensor at every pixel
location. This approach is computationally demanding but allows
reliable velocity estimates as well as quality indicators for the ob-
tained results. We use a 2D color map and a region of interest selec-
tor for the visualization of the velocities. On the selected velocities
we apply a hierarchical smoothing scheme which allows the choice
of the desired scale of the motion field. We demonstrate several
examples of test sequences in which some persons are moving with
different velocities than others. These persons are visually marked
in the real-time display of the image sequence. The tool is also ap-
plied to angiography sequences to emphasize the blood flow and its
distribution.

An efficient processing of the data streams is achieved by map-
ping the operations onto the stream architecture of standard graph-
ics cards. The card receives the images and performs both the
motion estimation and visualization, taking advantage of the par-
allelism in the graphics processor and the superior memory band-
width. The integration of data processing and visualization also
saves on unnecessary data transfers and thus allows the real-time
analysis of 320x240 images. We expect that on the newest gener-
ation of graphics hardware our tool could run in real time for the
standard VGA format.

CR Categories: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Motion, Time-varying imagery; G.1.3 [Numeri-
cal Analysis]: Numerical Linear Algebra—Eigenvalues and eigen-
vectors; I.3.8 [Computer Graphics]: Applications;

Keywords: motion estimation, motion visualization, structure ten-
sor, eigenvector analysis, real-time processing, graphics hardware

1 INTRODUCTION

For the estimation of motion from digital image sequences a num-
ber of different techniques has been proposed [1, 2, 19]. For real
time applications, feature tracking algorithms are widely in use
[7, 43]. While these approaches offer real time performance, esti-
mated velocity fields are sparse. Also, inherent to these techniques
is a reduced accuracy [31], not making them ideal candidates for
applications in which the precise estimation of motion is required.

Estimating motion patterns from gradient based optical flow
techniques offer a number of advantages. Generally, these tech-
niques are highly accurate [1] and provide dense estimates. Another
important property is the computation of confidence measures and
type measures, indicating the quality of the estimates and problem-
atic regions. Both measures are given by gradient based techniques
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with almost no additional computational cost. Due to these advan-
tages this type of estimator for optical flow was chosen in the con-
text of this work.

The computation of dense motion fields for an image sequence
requires high processing power. Parallel computers and different
hardware architectures have been considered to accelerate these
computations [28, 33, 44]. We meet the real-time requirements by
exploiting the stream architecture of graphics cards. Graphics cards
are not a cure-all for performance critical applications. They have
traditionally been optimized for high data throughput and subscribe
to a different computing paradigm than micro-processors, resulting
in an inherent advantage for operations on large data streams. The
concept they follow is not new, but equivalent processing power has
not been previously available in such relatively inexpensive stan-
dard hardware products. Consequently, our tool does not aim for
the ultimate performance on the best suited architecture but wants to
demonstrate that a simple camera and a PC with a powerful graph-
ics card suffice for the real-time motion estimation and visualization
of image sequences.

Because of its outstanding price-performance ratio, graphics
hardware has already been considered for the implementation of
various general computing problems. We refer to [15] for a com-
prehensive overview. We are the first to address motion estimation
on graphics cards, but individual parts of our algorithm are related
to other work in this area, such as filtering [9,16,21], linear algebra
operations [4, 14, 29], visualization [9, 39, 41], adaptive hardware
techniques [10, 30, 37].

Along with the increasing number of CCTV cameras literature
on video surveillance has grown rapidly [8, 23, 26]. In contrast to
most other contributions we concentrate on the real-time visual em-
phasis of the motion field with standard hardware components, as-
suming a complex motion pattern in the scenes, which defeats sim-
ple tracking or classification of individual activities. This is also
orthogonal to [11], where an efficient 3D visualization most suit-
able for a compact summary of isolated motion events has been
presented. Concerning the angiography sequences research focuses
mainly on the segmentation of the vascular system [25]. We operate
in real-time directly on the images similar to [5], whereas in a post-
processing step a much more detailed analysis can be obtained [40].

2 MOTION ESTIMATION

We quickly review the gradient based optical flow method we use
and describe on the algorithmic level the computations we perform.

2.1 Optical Flow

A very common assumption in computations of image velocity is
the brightness change constraint equation (BCCE) [22]. It states
that the image brightness g(~x, t) at the location~x = (x1,x2)> should
change only due to motion, i.e. the total derivative of its brightness
has to vanish [13]:

dg
dt

=
∂g
∂ t

+
∂g
∂x

dx
dt

+
∂g
∂y

dy
dt

= gt +(~f~∇)g = ~d · p = 0, (1)
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with the optical flow ~f := (dx/dt,dy/dt)> = (u,v)>, the spacial
gradient ~∇g = [gx,gy]> and the partial time derivative gt = ∂g/∂ t.
The data vector ~d is given by ~d := [gx,gy,gt ] and the parameter
vector by ~p := [u,v,1]>.

Equation (1) poses an under-determined system of equations, as
there is only one constraint with the two unknowns of the optical
flow vector ~f . Different approaches exist for solving this problem,
such as introducing a global smoothness assumption. These tech-
niques run into problems at motion discontinuities where measures
have to be undertaken not to smooth over these boundaries. There-
fore, in this work we chose a local approach that does not rely on
any global constraints.

Assuming constant optical flow over a small spatio-temporal
neighborhood surrounding the location of interest containing m pix-
els (for optical flow [32] and [6]), the problem consists of m equa-
tions of the form of Equation (1). With the data matrix

~D := (~d1, . . . , ~dm)> (2)

the total least squares problem can be reformulated as the structure
tensor [3, 19, 27], that is

||~D~p||2 =
∫

∞

−∞

w(~x−~x′, t− t ′)
(
~p>~D>~D~p

)
d~x′dt ′

= ~p>~J~p −→ min (3)

~J :=
∫

∞

−∞

w(~x−~x′, t− t ′) ~D>~D d~x′dt ′

with the boundary condition ~p>~p = 1 to avoid the trivial solution
~p = 0. The parameter vector ~p was taken out of the integral as it
is assumed to be locally constant. Here w(~x−~x′, t − t ′) represents
a weighting function that defines the spatio-temporal neighborhood
for which the parameters are to be estimated. On a discrete grid the
integral is changed to a summation and the weight function w(~x−
~x′, t − t ′) to the individual weights wi. A binomial filter has been
proven to be a good choice for the weights wi as it is both symmetric
and leads to a decreasing influence of data terms with distance from
the considered pixel.

After incorporating the boundary condition in a Lagrangian mul-
tiplier calculus the minimization problem of Equation (3) is reduced
to an eigenvector problem of the symmetric matrix ~J:

~J~p = λ~p. (4)

Consequently, the eigenvector ~e3 to the smallest eigenvalue λ3 of
~J is the solution of the minimization problem. The velocities are
given after normalization

~p = [u,v,1]> =~e3/~e3,3 , (5)

where ~e3,3 is the last element of the eigenvector ~e3. The eigensys-
tem of the symmetric matrix ~J can be computed with Jacobi ro-
tations as described by [36] or more elaborately by the algorithm
proposed in [12].

2.2 Computation

The structure tensor ~J can be assembled quite efficiently. First, the
spatial-temporal gradients ~d = [gx,gy,gt ] have to be estimated. We
apply a 3 or 5 tab isotropy optimized Sobel filter D in each direction
q ∈ {x,y, t}: ~dq = Dq g [24]. Then, according to the continuous
definition (Eq. 3), the elements of the structure tensor ~J can be
computed from the data matrix ~D (Eq. 2):

~Jpq =
m

∑
i=1

wi~Dip~Diq . (6)

Because the 3x3 tensor ~J is symmetric, we only need to compute
6 products (~dp~dq)pq, p ≤ q at each pixel location. The weights wi
are usually chosen to be the binomial coefficients. Thus, we obtain
~J by applying a binomial filter B to each of the 6 products. The
filter operates on a 32 or 52 stencil in the spatial domain, i.e. m =
9 or m = 25. The computational cost can be further reduced by
exploiting the separability of the filters D and B.

For the diagonalization of ~J we use the standard Jacobi method
since the improved accuracy of the modified method from [12] is
not directly transferable to graphics hardware, which implements
division with reciprocals and uses only an approximate square root
function. We perform the following iterations:

~J0:= ~J, ~V 0:= 11 ,

~Jk+1:= ~Gk
>~Jk ~Gk, ~V k+1:= ~V k ~Gk ,(

~Gk
pk pk

~Gk
pkqk

~Gk
qk pk

~Gk
qkqk

)
:=

(
ck sk

−sk ck

)
, for other pq : ~Gk pq:= 11pq ,

ck:= (1+ tk)−
1
2 , sk:= ck · tk ,

tk:= sgn(τk)
|τk |
√

1+τ2
k
, τk:=

~Jk
qkqk−

~Jk
pk pk

2~Jk
pkqk

.

(7)

We use a cyclic pivot strategy, i.e. the matrix index (pk,qk) runs
cyclically over the off-diagonal matrix indices {(p,q)|p < q}. With
growing k the diagonal of ~Jk converges to the eigenvalues and ~V k

to the eigenvectors of ~J.
The estimation of the full optical flow field ~f is only possible if

no aperture problem is present [20]. This is equivalent to requiring
that rank~J = 2. By analyzing the eigenvalues of ~J a coherence mea-
sure ce can be computed, indicating regions where full motion can
be derived. This coherence measure is given by

ce =
λ2−λ3

λ2 +λ3
, (8)

where λ3 and λ2 are the smallest and second smallest eigenvalues,
respectively.

In natural image sequences large areas with negligible spatio-
temporal gradients may be present. Since the trace of a matrix is
invariant under rotation, trace~J presents a good measure for these
areas. By only computing the eigensystem of ~J at locations where
the trace is above a certain threshold, unnecessary computational
cost is avoided. We refine this approach by treating the diagonal el-
ements of spatial and temporal gradients separately, i.e. we require

~Jxx + ~Jyy > τs (9)
~Jtt > τt . (10)

This condition is not fully rotationally invariant anymore, but al-
lows a much better detection of motion irrelevant regions.

In our application concerned with the real-time presentation of
selected motion features rather than ultimate precision in the esti-
mation we can further reduce the computational load without sig-
nificant loss of accuracy. First, we reduce the spatial resolution of
the images with a down-sampling step. This is legitimate since in a
real-time display the user is not able to draw any information from a
single pixel anyway, and we often even apply a smoothing step for
the visualization of the motion (Section 3.4). After the computa-
tion the images are scaled up again for display. The down-sampling
is not critical as long as the texture information, which is crucial
for the diversification of the structure tensor elements, is not lost.
Typically we scale down the VGA format (640x480) to 320x240.
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For frame rates higher than 25Hz the temporal resolution of the
image sequences is reduced. To avoid temporal aliasing the regu-
larized gradients still use the full temporal resolution and only the
time intensive eigenvalue analysis skips intermediate images. Thus,
artefacts that would be introduced by a mere sub-sampling are elim-
inated. At the same time a significant speed up is achieved.

3 VISUALIZATION

In this section we follow the visualization process from the raw
velocities to the display of motion features in the image sequence.
Figure 1 accompanies the explanation of the individual steps of this
process.

3.1 Coloring

From the motion estimation we obtain an image with the estimated
x and y velocities (Eq. 5). In Figure 1a we see the modulus of
the velocity as intensity. Visual representation of vector fields is an
extensive topic of its own. However, in real-time image sequences
there is little time for computation and the user has only a fraction of
a second to perceive and understand the images. A reliable method
for conveying a qualitative picture of the motion is to use color.
Color is especially useful to catch the eye of the observer in an
otherwise gray image [38].

We use a 2D color map to represent the motion field. Theoret-
ically each location in the color map is assigned a different color,
such that all directions can be unambiguously distinguished, but it
is illusionary to think that this information can correctly be inter-
preted in real-time. It is more advisable to adapt the color map to
the application in mind. For the test sequences of walking people
we use a map which helps to distinguish the differences in x ve-
locity, with the y axis being poorly represented (Figure 2a). Figure
2b shows a map which represents all directions equally well. How-
ever, this color richness can be often more confusing than helpful
and so for the medical data sets we use either a rainbow encoding of
the velocity modulus (Figure 2c) or even a single color and rely on
the fading explained below to better convey the motion. From the
implementational point of view any texture with a color map could
be used. Figure 1b is an image of the test sequence after the first
coloring step.

3.2 Blending

The motion estimator works adaptively only on these regions which
yield a sufficiently pronounced structure tensor (Eqs. 9,10). This
saves a lot of computation time in typical sequences as can be seen
in Figure 1c, where the uncomputed area is displayed in black. De-
spite the air irritations visible in 1b, most of the background is
omitted upon Equation (10), while the homogeneous black in the
trousers violates Equation (9). Areas with a strong aperture prob-
lem are also masked out (Eq. 8). For visualization purposes this
empty area can be used to blend in the original image sequence
(Figure 1d).

3.3 Region of Interest

In general the motion field contains velocities of various scales and
in a given application we are usually only interested in a small sub-
set of them. Also at spatial and temporal (very fast motion) dis-
continuities we can still obtain erroneous results despite the culling
based on the quality measure (Eq. 8). Therefore, we allow to spec-
ify the region of interest on the velocity modulus or an axis through
the center of the color map to select velocities upon the intensity
in a certain direction, e.g. the x direction in the test sequence. In
Figure 1e we have tried to pronounce the faster moving person in

a

b

c

d

e

f

g

Figure 1: The steps of the visualization pipeline described in Section
3. Every fifth frame of the sequence is shown.

547



a b c

Figure 2: Color maps used for the coloring of the velocities

this way. But we see that the arms and legs of the others are moving
at an even higher velocity. We need additional post-processing to
distinguish among the velocity regions.

3.4 Smoothing

The previous selector determines the visible value range of the ve-
locities. This produces regions of similar velocity but different size.
We can use their size and form as a criteria to differentiate between
them. For this purpose we smooth the characteristic function of the
selected regions. By thresholding the obtained values we can select
the spatial scale of the motion regions. The preference of this pro-
cess for regions expanded in a certain direction can be influenced by
changing the weights of the smoothing mask. For the elimination
of small disjoint regions only the values of the smoothed charac-
teristic function are relevant. But for a nicer visual representation
the scheme applies the smoothing also to the velocities themselves.
Figures 1f and g show the results after the application of 3 and 5
smoothing steps respectively.

In the sequence from which Figure 1g has been extracted only
the faster moving person is marked by the display of the motion
region. All other motion regions, though similar or even higher in
velocity, are masked out. This masking is very general and does not
require any knowledge about the objects or type of motion. How-
ever, if this knowledge is present it could help to provide even finer
feature distinctions. In future, we will therefore consider the inte-
gration of one of the many motion segmentation techniques which
can incorporate such a-priori information.

3.5 Fading

In some cases we are not only interested in the display of the current
motion field, but want also to visualize the regions already effected
by previous motion. In angiography, for example, the flow of blood
marked by a contrast agent is of great interest to the physician. But
the motion estimator can only compute velocities at the front of the
in- or outflowing agent. Without further processing the visualiza-
tion of these velocities results in a confusingly fast rush of colors
through the image sequence. Such sequences have also a lower
temporal resolution, so that the motion estimates at any individual
time point are not as reliable as their weighted integration.

During the streaming of the sequence we record for the each
pixel location the point in time at which it represented a non zero ve-
locity. This information is used to display a fading of the recorded
motion. Figure 8 shows the benefit of this visualization method.

4 HARDWARE IMPLEMENTATION

Graphics processors achieve a high throughput for large data vol-
umes by applying a data-stream-based computing paradigm [17]. In
particular, this paradigm deals well with the memory gap [42], the
mismatch of memory and processor performance. Among FPGAs,
reconfigurable computing arrays, Processor-in-Memory or stream
architectures, graphics processors are neither the most flexible nor

powerful devices exploiting data-stream-based processing, but they
offer an unrivaled price-performance ratio and a comparably easy
high level language access to their functionality. This means that
they are the platform of choice for an inexpensive image sequence
processing tool.

In the following we describe first the control of the data-flow and
then the configuration of the processing elements in the graphics
pipeline for our application.

4.1 Data-flow

First we assume that the individual images of the image sequence
lie in main memory. The images are transported one by one to the
graphics card with an asynchronous mechanism (pixel buffer ob-
jects), which allows the card to continue the current computation
during the transfer. For this we use several circular buffers on the
card, and the image loads to a buffer position which is not needed
in the concurrent computation. Each image is read only once, so
that the AGP bus provides sufficient bandwidth in comparison to
the number of on-card operations as not to decrease the overall per-
formance. Because all steps of the algorithm are performed on the
card, no additional memory transfers are needed. The final result is
displayed directly from the graphics memory onto the screen.

On the graphics card the images are represented as pbuffers.
These buffers are 2D data arrays which can serve either as a source
(texture) or a destination of data streams (see Figure 3). The op-
erations of the algorithm are performed by streaming the texture
operands through the appropriately configured graphics pipeline
(Section 4.2) to a target pbuffer. The target pbuffer can then be
used as a texture operand in the succeeding operation. Because
several such passes are required by the algorithm, we use mainly
floating point pbuffers to retain sufficient precision in intermediate
computations.

As long as the same operation is applied to all pixels of the image
sequence, the implementation is very fast, as the efficiency of the
pipeline grows with the size of the streams. The handling of adap-
tive exclusion of certain regions from computation requires the use
of smaller streams. This process is described in Section 4.3.

Currently we assume that the image sequence is stored in the
main memory. Since we need to read each image only once, the
algorithm would work just the same if the images arrived from an
external source at a certain memory address one by one. In fact, in a
future version we plan to decode a video stream in real-time on the
CPU, while the graphics processor works on the motion estimation
and visualization.

4.2 Pipeline Configuration

The DX9 graphics pipeline contains two freely programmable
parts, the vertex and the fragment processor (Figure 3). The ver-
tex processor mainly manipulates the input vertex and texture co-
ordinates and vertex color. The hard-wired rasterizer interpolates
these values for each pixel in the primitive which is currently being
drawn, e.g. a triangle. The interpolated values associated with one
pixel location are called a fragment. They are manipulated by the
fragment processor. The fragment processor combines the fragment
data with additional values from up to 16 textures to determine the
output value for the current pixel.

In image based problems like ours the fragment processor bears
most of the computational burden. We use the vertex processor only
for the generation of texture coordinates to the neighboring values
in a texture, whereas each step in the algorithm (Figure 4) requires
a different configuration of the fragment processor. For the design
of the configurations we use Cg [35], a C-like high level graphics
programming language.

The motion estimation consists of two major tasks: the assembly
of the structure tensor and its diagonalization. The assembly of ~J
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RasterizerVertex
Processor

textures

Processor
Fragment

values
pbuffer

vertex
data

vertex
data fragments

values

Figure 3: A simple diagram of the DX9 graphics pipeline. Light gray
represents data containers, dark gray processing units. In each pass
a different texture can serve as the target pbuffer for the output data
stream.

motion estimation {
start loading of the image for the next iteration
sample down current image
assemble the weighted structure tensor ~J (Eq. 6) {

estimate the gradient with optimized Sobel filter D

compute the products of gradient components (~dp~dq)pq
apply the binomial filter B

}
classify irrelevant regions for culling (Eqs. 9,10)
perform an eigenvector analysis of the tensor ~J(Eq. 4) {

diagonalize the tensor with Jacobi rotations (Eq. 7)
compute the coherence measure ce (Eq. 8)
estimate the motion ~p (Eq. 5)

}
}
visualization {

select a range of velocities
smooth the selected motion regions hierarchically
record the selected motion areas
visualize the result: coloring, blending, fading
display the result at the desired scale

}

Figure 4: Overview of one iteration of the main algorithm. Basically
each line corresponds to the configuration of the fragment proces-
sor with the corresponding fragment program and the streaming of
the texture operands through the so configured graphics pipeline (see
Figure 3). Some operations require several passes with slightly differ-
ent configurations, e.g. smoothing in x and y direction, while others
can be executed in a single configuration (eigenvector analysis of the
structure tensor).

is implemented according to Equation (6) as several passes with
configurations for the binomial B and the optimized Sobel D filter,
and the products (~dp~dq)pq, p ≤ q. Because the filters are separable,
separate passes for the x, y and t direction save a lot of computation,
e.g. the 5 tab optimized Sobel filter requires only 15 multiplications
and additions although 53 = 125 different values are involved. The
savings are smaller for the binomial filter which operates on 2D
stencils only in the spatial domain.

The eigenvector analysis executes in a single pass with a large
configuration which performs a constant number (typically 9) of
cyclic Jacobi rotations (Eq. 7) on ~J. The approximate eigenvectors
and eigenvalues are used to estimate the motion (Eq. 5) and the
coherence measure (Eq. 8). We store the symmetric 3x3 matrices
~Jk as two and the transformation matrices ~V k as three 3-vectors,
such that the rotations can be vectorized into the internal 4-vector
operations of graphics hardware.

The visualization pipeline contains also an iterative part (hier-
archical smoothing) and a long configuration for the main visu-
alization program (coloring, blending, fading). The hierarchical
smoother is a series of filter applications. The separable filters have

the form (σy,1−2σy,σy)>(σx,1−2σx,σx). By choosing σx 6= σy
we can favor the smoothing in one direction. To quickly incorporate
information from farther regions in the smoothing process we use a
multi-grid approach, but without actually generating smaller grids.
Working on the next higher level means multiplying the offsets to
the stencil positions with 2 such that we retrieve the values which
would have been restricted to the next higher level in a standard
multi-grid, e.g. the x mask (σ0

x ,1− 2σ0
x ,σ0

x ) on level 0 becomes
(σ1

x ,0,1− 2σ1
x ,0,σ1

x ) on level 1. Certainly, we lose the computa-
tional savings of smaller grids, but because we operate on all pixels
in the same manner, we have the advantage that the results are more
stable under translation. This is especially important since the real-
time requirements allow only very few iterations. In the standard
setting we smooth only once on each level. So after 3 or 5 smooth-
ing steps already a 15x15 or 63x63 neighborhood contributes to the
smoothing of each pixel, respectively.

The eigenvector analysis of the tensor is by far the longest and
thus most demanding fragment program with almost 300 assembly
operations for 9 Jacobi rotations and the motion estimation. The
main visualization program (coloring, blending, fading) is the next
larger with approx. 50 operations. Most configurations have less
than 10. Therefore, it makes sense to design an adaptive scheme
which skips the eigenvector analysis for irrelevant data.

4.3 Adaptivity

By analyzing the structure tensor (Eq. 6) we can save on the com-
putation of the eigenvectors in areas which do not contribute signif-
icantly to the motion field (Eqs. 9,10). However, the introduction
of efficient dynamic adaptive processing in graphics hardware is
not straight forward. There exist per-fragment tests in the graph-
ics pipeline which skip further processing depending on predefined
masks and values of the fragments, but these are not very efficient,
because they cannot exclude larger areas from processing at once.
The fragment processor can also discard fragments, but in such a
case the whole fragment program is still executed and only the fi-
nal result is discarded. Significant speedup can currently be only
obtained by culling areas on the vertex level.

The image is divided into tiles, each of which generates a data
stream much smaller than the whole image. Smaller streams re-
duce the efficiency of the pipeline, but this effect is compensated to
some extent by the graphics driver, which can efficiently catenate
the individual data streams if their defining geometry is given in
advance, ideally in a server sided vertex buffer object. A classifi-
cation step determines which tiles need to be processed further and
which can be skipped in the following. The classification step can
be performed by combining the data of each tile to a single value
and retrieving the values of all tiles with a single read-back to the
main memory as in [30], where this technique has been introduced.

We use a different classification step which avoids the read-back
by exploiting the occlusion test functionality. The test counts the
number of passed fragments at a late stage in the graphics pipeline.
The counters can asynchronously be retrieved from the graphics
driver, i.e. they do not stall the ongoing computation. By discarding
fragments upon the conditions in Equations (9),(10), we thus easily
obtain the number of motion relevant pixels in each tile, and can
skip its subsequent processing if the number is below say 5%. The
transition from Figure 1b to c demonstrates the savings. The tile
structure becomes visible if one skips tiles with too many relevant
pixels, e.g. 90% in Figure 5. For entire images the efficiency of the
occlusion test has already been demonstrated in [14]. See also [10]
for a similar tile based testing.
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Figure 5: The visible tiling in the adaptive scheme for much too
aggressive culling. In Figure 1c the standard setting is used.

a

b

Figure 6: Visual emphasis of faster moving persons. In the upper
row only the slightly brighter green conveys the qualitative velocity
difference. Below the visual mark makes it much clearer.

5 RESULTS

We use two types of image sequences as examples: test sequences
of walking people to demonstrate the tool’s ability to distinguish
similar motion features, and angiography sequences for the en-
hancement of blood flow.

5.1 Motion Features

The sequences with walking people were recorded in VGA
(640x480) format at 100Hz. The computation takes place on
320x240 images. The eigenvector analysis runs on every fourth im-
age resulting in a real-time requirement of 25Hz output frequency.
Section 5.3 discusses the performance results.

Figure 1, discussed in Section 3, shows the individual steps
which made it possible to visually extract the feature of the slightly
faster moving person despite smaller regions (arms, legs) of higher
velocity. Figure 6 shows another sequence of the same kind. In the
above examples the parameters must be set carefully to obtain the
visual distinction with such clarity. But it is obvious that a higher
velocity difference requires only a rough selection of the visualiza-
tion parameters. For example, for the task of marking persons who
move in the wrong direction only the sign of admissible x velocities
must be set correctly (Figure 7).

a

b

c

Figure 7: Marking of people who move in the wrong direction. De-
spite the occlusion the visual emphasis is very accurate.

a

b

c

Figure 8: High velocities detected in the blood flow emphasized by
a color fading. At the time point of frame b no velocities can be
detected, such that without the fading the frame would not show
any color at all.
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Figure 9: Detected regions of wide-stretched motion in the vascular
system. Color indicates the modulus of velocity.

5.2 Flow Enhancement

The angiography sequences have a resolution of 1024x1024 at
20Hz. The computation takes place on 256x256 images, without
a reduction of the temporal axis.

The first example shows the blood flow in a kidney (Figure 8).
We see how the fading of the color helps to understand the distri-
bution of the motion. In the second example we record the motion
regions extending over a certain spatial scale to help in finding tur-
bulent areas in the vascular system (Figure 9).

5.3 Performance

Figure 10 shows performance results computed with a GeForceFX
5800 Ultra (GF5800U) and different Pentium 4 (P4) processors.
The software implementation was tuned to exploit cache coherency
and the SSE operations. We achieve a 4.5 and 2.8 speedup factor
against the older and newer P4 system respectively. We see that
the newer P4 executes 1.6 times faster than the older one, which
can be attributed both to the higher clock frequency and the faster
FSB. Similarly the graphics processors would benefit from both a
wider data bus and more or faster execution units. For our algo-
rithm the latter is more important, because the performance of the
very long assembly program for the eigenvector analysis is bound
by the capability of the fragment processor. Therefore, we expect
a quadrupled speedup on the newest generation of graphics hard-
ware (Radeon X800XT, GeForce 6800 Ultra), which executes four
to eight times more arithmetic operations in the fragment proces-
sor than the GF5800U. In practice this would mean operating in
real-time on VGA image sequences.

The algorithm could also benefit from the new feature of dy-
namic branching in graphics hardware. For the performance com-
parison a constant number of cyclic Jacobi rotations has been exe-
cuted in all cases. But in a software program the choice of the pivot
elements and the overall number of rotations usually takes place
dynamically depending on a user given tolerance. This allows to
exploit the iterative nature of the Jacobi method (in contrast to QR
decomposition) and iterate longer when the diagonalization of ~J is
difficult or terminate faster for easy cases.

6 CONCLUSIONS

We have presented a tool for the real-time motion estimation and
visualization of image sequences. The precise, dense motion
estimation allows to visually distinguish even very similar fea-
tures through appropriate post-processing steps. The visualization
pipeline contains several stages which can be easily controlled to
serve the needs of different applications. Other hardware systems
perform even more time consuming motion analysis in real-time but
at a much higher price. For our tool a simple camera and a standard
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Execution times
Sequence P4-2.0GHz P4-2.8GHz GF5800U Est.+Vis.
Figure 1 22.4 14.0 5.0 6.0
Figure 6 19.8 12.2 4.3 5.2
Figure 7 17.7 10.5 3.8 4.6

Speedups
Sequence GF5800/P4-2.0 GF5800/P4-2.8 P4-2.8/P4-2.0
Figure 1 4.5 2.8 1.6
Figure 6 4.6 2.8 1.6
Figure 7 4.7 2.8 1.7

Figure 10: Comparison of the motion estimation performance of
a Pentium 4-2.0GHz FSB400, Pentium 4-2.8GHz FSB800 and the
GeForceFX 5800 Ultra 500MHz / 500MHz (128bit DDR) graphics
processor. The fourth bar shows the graphics timings for the entire
process, i.e. motion estimation and visualization. All times are given
in seconds.

PC with a DX9 graphics card suffice, because we make efficient use
of its data-stream-processing capabilities.

The current version implements the basic motion estimation
based on the BCCE. This implies that gray values are modeled to
remain constant on their trajectory. We want to incorporate further
extensions which allow a gray value change as described by an ap-
propriate partial differential equation [18]. In real world sequences
another problem often encountered is multiple or transparent mo-
tion. The framework presented in this paper could also be extended
to incorporate this type of motion [34].

The unambiguous marking of objects with a certain motion fea-
ture suggests some sort of artificial intelligence in the algorithm.
But currently the visual marks are based solely on the motion val-
ues. The inclusion of a-priori knowledge about the objects in the
images could help to resolve even more difficult situations than
those in the presented examples. From the implementational point
of view we want to involve the CPU in the processing by decoding
a camera’s video stream and reusing its coarse motion estimators in
real-time, while the graphics processor executes the precise motion
estimation and visualization.
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